

Fast Cycling SC Magnets

Arup Ghosh

Introduction

- Most high-field SC-synchrotron magnets are ramped at low dB/dt, Tevatron being one of the highest with dB/dt ~ 60-125 mT/s.
- There are also several lower field (~2T) synchrotrons which are cycled at much higher ramp-rates ~ 1-4 T/s.
 - With the exception of the Nuclotron magnets which are SC, all are resistive magnets.
- In recent plans for upgrades of accelerator facilities are proposals for higher field rapid cycling SC magnets, 2-4T

2-4T Rapid Cycling Magnets

 GSI has proposed, as part of their facility upgrade, using SC magnets in the range of 2-4T cycling at 4 T/s.

Fast Pulsed Magnets operated at 4T/s

- Technical Challenge:
 - Minimize losses due to eddy currents
 - In Strand, Cable, Iron, Beam tube
 - Reduce losses due to SC magnetization and the iron
 - Avoid Ramp rate induced quenching found in some fusion magnets and investigated in detail during the development of magnets for the SSC High Energy Booster
 - Develop precise magnetic field measurement system for fast-changing magnetic fields

Quench current of SSC magnets as a function of ramp rate **Eddy-Current**

Conductor/ Cable Design

Rutherford

CICC

Nuclotron

- 1-Cooling tube
- 2- Sc. strands
- 3- Nichrome wire
- 4- Kapton tape
- 5 Glassfiber tape

Strand Design

- Minimize SC magnetization
 - Small filament diameter 1-5 μm
- Small eddy-current loss
 - High-resistive matrix
 - Small twist pitch
- And still have a high Jc

RHIC strand 6 µm filaments, Cu-matrix

Cable loss in a Rutherford Cable

- Cable loss controlled by resistance of
 - Crossing wires, R_c
 - Adjacent wires, R_A
- Reduce R_c Loss
 - Resistive core

Maintain R_A for adequate
Current Sharing

 $\leftarrow Ra \rightarrow$

Rc

2T Super-ferric Magnet (Nuclotron)

Prototype Cos θ 4T Magnet

GSI-001 Quench Performance

Super Magnets for Supercollider ERICE Oct 26 - Nov-01 2003

Workshop Plans

- Issues for SC magnets operating at 1Hz
 - Optimal conductor choice
 - Warm or cold iron
 - Maximum field range ? (SIS 300 ⇒ 6T)
 - Effect of Cyclical Stress in the Coil
 - Field Harmonic measurements
- Issues for SC magnets operating in the 5-10 Hz range
 - Conductor design (more like AC wires and cables)
 - Operating field (iron or coil dominated magnets)
- Present Status